# Biochar Use In Viticulture

Report prepared by :



**USBI** 



Biochar has been successfully used in viticulture to boost productivity through improved plant and soil health without negative effects to the grape or wine flavor. There is a large body of research supporting the application of biochar in viticulture specifically, as well as in soils and compost generally.

With biochar matched appropriately to the soils at establishment, growers have seen a 2 to 3 harvest payback on their investment. The increasing need for improved water management is one of the prime benefits seen in vineyards, and that need is expected to intensify as a changing climate affects water availability further. An additional benefit to an investment in biochar is its longevity—measured in decades to millennia—which also opens the potential for economic benefit from the developing carbon credit markets.

Biochar is the product of heating organic feedstocks<sup>1</sup> in a low oxygen environment, a process called pyrolysis. Biochar's primary characteristic is its large surface area, which allows it to address these grape grower's needs:

- Increase water retention
- Increase soil carbon
- Nutrient release leveling
- Soil structure management
- Soil biota improvement
- Soil contamination mitigation
- Pruning and marc disposal (by serving as a feedstock for biochar production)

From the growers' experiences provided in the full report <sup>2</sup>, you can see there have been significant successes using biochar in vineyards. The clearest benefit of biochar is its water holding capacity, but the nutrient leveling effects and increased soil carbon (SOM) are also demonstrated in grower's increased productivity. While the soil characteristics were not identified by most growers, it's a critical factor when considering biochar enhancement, whether in the soil or as compost/mulch.

<sup>&</sup>lt;sup>1</sup>Feedstocks range from woody to grassy, bones, manure, livestock litters, and other inputs to create specialized chars.

<sup>&</sup>lt;sup>2</sup>Dovetail Report: Biochar Use in Viticulture

THIRD HARVEST REPORT, OASIS VINEYARD FIELD TRIAL WITH BIOCHAR AND COMPOST - <u>https://pacificbiochar.com/vineyard-field-trial-with-biochar-and-compost\_-3rd-harvest-report/</u>

Meta-analysis review, Schmidt et al, 2021 - https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12889

# Biochar Use in Viticulture: Project Team

- Kathleen Draper, Chair, International Biochar Initiative
- Harry Groot, Dovetail Partners
- Ashley McFarland, *Dovetail Partners*
- Tom Miles, Chair, US Biochar Initiative









The work upon which this presentation is based is funded through a grant awarded by the US Forest Service Wood Education Resource Center's Wood Innovation Grant 20-DG-11083150-011

## **Project Overview**

- The project explored the potential for using biochar in three applications:
  - Viticulture, Livestock and Poultry, and Stormwater Management.
- The process used was to:
  - Interview experienced users
  - Review relevant published scientific research
  - Analyze needs of users and other market data
  - Provide educational outreach
    - Reports
    - Webinars

## **Report Highlights**

- Biochar has been successfully used in viticulture to boost productivity through improved plant and soil health without negative effects to the grape or wine flavor.
- There is a large body of research supporting the application of biochar in viticulture specifically, as well as in soils and compost generally.
- There are many suppliers of biochar in the major grape growing regions of the US.

## **Today's Speakers**

- Kathleen Draper-Finger Lakes Biochar (NY), Co-Author of *Burn-Using Fire to Cool the Earth*, IBI Chair, USBI Board member
- Josiah Hunt-Pacific Biochar Benefit Corp., USBI Board member
- Doug Beck-Monterey Pacific Inc.

# Practical Application of Biochar in Vineyards

Doug Beck Monterey Pacific Inc. Josiah Hunt Pacific Biochar Benefit Co.

















*"When the carbon is worth more in the ground than it is in the furnace..."* 

















Farmland Improvement, Potting Media, etc.





Carbon Dioxide Removal, Voluntary Markets

Farmland Improvement, Potting Media, etc. Beerived: 22 May 2021 | Bevied: 17 August 2021 | Accepted: 12 August 2021 DOI:10.1111/jgeb.12899 ~2

RESEARCH REVIEW

GCB-BIOENERGY

Biochar in agriculture – A systematic review of 26 global meta-analyses

Hans-Peter Schmidt<sup>1</sup> | Claudia Kammann<sup>2</sup> | Nikolas Hagemann<sup>3,4</sup> | Jens Leifeld<sup>4</sup> | Thomas D. Bucheli<sup>4</sup> | Miguel Angel Sánchez Monedero<sup>5</sup> | Maria Luz Cayuela<sup>5</sup> |

**FIGURE 2** Selected parameters with highest agronomic relevance that were investigated in the 26 reviewed meta-analyses. The mean overall effect size (% change) and 95% confidence intervals are given as reported in the original studies. The numbers in parentheses indicate the number of pairwise comparisons used for that specific parameter





## Burn to generate electricity?

## Pyrolize to biochar, and bury?







## **Oasis Vineyard Biochar Trial**

California Dept. of Water Resources, University of California - Riverside, Sonoma Ecology Center, Monterey Pacific Inc, & Pacific Biochar









## Oasis Vineyard Trial 2017-2020

#### Treatments:

All treatments applied at depth down planting row (delved) in random pattern (4 replicates) across 8 acre trial area with standard annual fertilizer applications across all blocks

- a. Control o tons/acre compost, o tons/acre biochar
- Compost 15 15 tons/acre compost
- c. Biochar 10 10 tons/acre biochar
- d. Compost + Biochar 15 tons/acre compost, 10 tons/acre biochar





| %OM Cal           | culations for Vineyar     | d Treatments       |                           |                    |                     |                |   |
|-------------------|---------------------------|--------------------|---------------------------|--------------------|---------------------|----------------|---|
| <b>Cultivated</b> | Area_ Soil Volume and We  | eight              |                           |                    |                     |                |   |
| Cu ft / vine      | vine / acre               | cu ft / acre       | cu yd / acre              | soil density g/cm  | soil density ton/cy | tons soil/acre |   |
| 25                | 1089                      | 27225              | 1008                      | 1.3                | 1.10                | 1104.64        |   |
| Biochar Ap        | plication Rate_ Ton/acre  | Input, %OM Output  |                           |                    |                     |                |   |
|                   | biochar applied (wet ton) | biochar moisture % | biochar applied (dry ton) | biochar OM content | tons OM applied     | % SOM achieved |   |
| Biochar           | 10.00                     | 38%                | 6.18                      | 74.50%             | 4.60                | 0.42%          | 4 |
| Compost A         | pplication Rate_Ton/acro  | e Input, %OM Outpu | ut                        |                    |                     |                |   |
|                   | compost applied (wet ton) |                    |                           | compost OM content | tons OM applied     | % SOM achieved | 1 |
| Compost           | 15.00                     |                    |                           |                    | 3.27                |                | - |





| Harvest 2019 3rd Leaf | Yield | Cluster # | Cluster lb |
|-----------------------|-------|-----------|------------|
| R1                    | 2.78  | 26.40     | 0.31       |
| R2 Control            | 3.73  | 28.70     | 0.27       |
| R3                    | 2.82  | 23.10     | 0.25       |
| R4                    | 2.42  | 26.30     | 0.31       |
| Control Average       | 2.94  | 26.13     | 0.29       |
| R1                    | 4.04  | 30.60     | 0.27       |
| R2 Compost            | 3.30  | 27.10     | 0.25       |
| R3                    | 4.20  | 33.20     | 0.26       |
| R4                    | 4.02  | 27.60     | 0.30       |
| Compost Average       | 3.89  | 29.63     | 0.27       |
| R1                    | 3.94  | 28.50     | 0.29       |
| R2 Biochar            | 4.90  | 39.60     | 0.26       |
| R3                    | 3.63  | 27.30     | 0.28       |
| R4                    | 4.55  | 33.30     | 0.28       |
| Biochar Average       | 4.26  | 32.18     | 0.28       |
| R1                    | 3.78  | 26.80     | 0.29       |
| R2 Compost + Biochar  | 3.58  | 24.40     | 0.30       |
| R3                    | 3.83  | 36.90     | 0.21       |
| R4                    | 4.08  | 31.50     | 0.27       |
| Compost-Bio Average   | 3.82  | 29.90     | 0.27       |

| Harvest 2020 4th Leaf | Yield | Cluster #           | Cluster lb |
|-----------------------|-------|---------------------|------------|
| R1                    | 9.22  | 54.60               | 0.31       |
| R2 Control            | 10.12 | 53.95               | 0.34       |
| R3                    | 8.66  | 46.60               | 0.34       |
| R4                    | 8.00  | 41.85               | 0.35       |
| Control Average       | 9.00  | 49.25               | 0.34       |
| R1                    | 10.37 | 55.25               | 0.34       |
| R2 Compost            | 10.72 | 54.30               | 0.36       |
| R3                    | 11.39 | 62.60               | 0.33       |
| R4                    | 10.68 | 54.45 <sub>05</sub> | 0.36       |
| Compost Average       | 10.79 | 56.65               | 0.35       |
| R1                    | 10.71 | 57.00               | 0.34       |
| R2 Biochar            | 10.79 | 57.40               | 0.35       |
| R3                    | 10.72 | 58.50               | 0.34       |
| R4                    | 8.27  | 45.55               | 0.33       |
| Biochar Average       | 10.12 | 54.61               | 0.34       |
| R1                    | 11.21 | 58.80               | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15               | 0.34       |
| R3                    | 13.09 | 65.10               | 0.37       |
| R4                    | 9.57  | 49.85               | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23               | 0.35       |

| Harvest 2020 4th Leaf | Yield | Cluster # | Cluster lb |
|-----------------------|-------|-----------|------------|
| R1                    | 9.22  | 54.60     | 0.31       |
| R2 Control            | 10.12 | 53.95     | 0.34       |
| R3                    | 8.66  | 46.60     | 0.34       |
| R4                    | 8.00  | 41.85     | 0.35       |
| Control Average       | 9.00  | 49.25     | 0.34       |
| R1                    | 10.37 | 55.25     | 0.34       |
| R2 Compost            | 10.72 | 54.30     | 0.36       |
| R3                    | 11.39 | 62.60     | 0.33       |
| R4                    | 10.68 | 54.45     | 0.36       |
| Compost Average       | 10.79 | 56.65     | 0.35       |
| R1                    | 10.71 | 57.00     | 0.34       |
| R2 Biochar            | 10.79 | 57.40     | 0.35       |
| R3                    | 10.72 | 58.50     | 0.34       |
| R4                    | 8.27  | 45.55     | 0.33       |
| Biochar Average       | 10.12 | 54.61     | 0.34       |
| R1                    | 11.21 | 58.80     | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15     | 0.34       |
| R3                    | 13.09 | 65.10     | 0.37       |
| R4                    | 9.57  | 49.85     | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23     | 0.35       |

| Har  | vest 2021 5th Leaf      | Yield | Cluster # | Cluster lb |
|------|-------------------------|-------|-----------|------------|
| indi | VEST LOLI SUI LEGI      | TICIU | cluster # | ciuster in |
| R1   |                         | 2.897 | 25.40     | 0.21       |
| R2   | Control                 | 3.376 | 30.25     | 0.20       |
| R3   |                         | 4.438 | 56.15     | 0.15       |
| R4   |                         | 4.62  | 48.60     | 0.17       |
|      | Control Average         | 3.833 | 40.10     | 0.18       |
| R1   |                         | 4.397 | 33.40     | 0.24       |
| R2   | Compost                 | 3.762 | 37.20     | 0.19       |
| R3   |                         | 6.044 | 49.65     | 0.22       |
| R4   | A                       | 7.193 | 65.85     | 0.20       |
| Cor  | mpost Average           | 5.349 | 46.53     | 0.21       |
| R1   | 1 TO 4 TO 1             | 4.108 | 32,30     | 0.23       |
| R2   | Biochar                 | 5.418 | 45.40     | 0.22       |
| R3   |                         | 6.161 | 52.95     | 0.21       |
| R4   | C                       | 5.685 | 50.05     | 0.21       |
| Bio  | char Average            | 5.343 | 45.18     | 0.22       |
| R1   | 10 Mar. 10 Mar. 10 Mar. | 4.775 | 36.50     | 0.24       |
| R2   | Compost + Biochar       | 6.382 | 41.00     | 0.29       |
| R3   |                         | 7.914 | 63.80     | 0.23       |
| R4   |                         | 7.533 | 68.30     | 0.20       |
| Cor  | mpost-Bio Average       | 6.651 | 52.40     | 0.24       |

#### Yield, Percent Above Control, 3 Harvests



Harvest Years

### Yield, Percent Above Control, 3 yr Average Control 📕 Compost 📒 Biochar Compost + Biochar 50.00% 40.00% 30.00% 20.00% 10.00% 0.00%

#### **Compost Analysis**

| Nutrients                        | Dry wt. | As Rcvd. | units    | Stability Indica           | ator:        |               | Biologically |
|----------------------------------|---------|----------|----------|----------------------------|--------------|---------------|--------------|
| Total Nitrogen:                  | 1.5     | 0.79     | %        | CO2 Evolution              | 1            | Respirometery | Available C  |
| Ammonia (NH <sub>4</sub> -N):    | 18      | 9.1      | mg/kg    | mg CO <sub>2</sub> -C/g OM | M/day        | 0.73          | 1.0          |
| Nitrate (NO <sub>3</sub> -N):    | 450     | 230      | mg/kg    | mg CO <sub>2</sub> -C/g TS | S/day        | 0.31          | 0.44         |
| Org. Nitrogen (OrgN):            | 1.5     | 0.77     | %        | Stability Rat              | ing          | very stable   | very stable  |
| Phosphorus (as P2O5):            | 3.7     | 1.9      | %        | 1316                       |              |               |              |
| Phosphorus (P):                  | 16000   | 8300     | mg/kg    |                            |              |               |              |
| Potassium (as K <sub>2</sub> O): | 7.9     | 4.1      | %        | Maturity Indica            | ator: Cucum  | ber Bioassay  |              |
| Potassium (K):                   | 66000   | 34000    | mg/kg    | Compost:Vermi              | iculite(v:v) | 1:2           |              |
| Calcium (Ca):                    | 27      | 14       | %        | Emergence (%)              | )            | 93            |              |
| Magnesium (Mg):                  | 2.7     | 1.4      | %        | Seedling Vigor             | (%)          | 109           |              |
| Sulfate (SO <sub>4</sub> -S):    | 4000    | 2000     | mg/kg    | Description                | of Plants    | healthy       |              |
| Boron (Total B):                 | 110     | 58       | mg/kg    |                            |              |               |              |
| Moisture:                        | 0       | 48.7     | %        |                            |              |               |              |
| Sodium (Na):                     | 1.6     | 0.83     | %        | Pathogens                  | Results      | Units         | Rating       |
| Chloride (CI):                   | 0.83    | 0.43     | %        | Fecal Coliform             | 8.5          | MPN/g         | pass         |
| pH Value:                        | NA      | 7.59     | unit     | Salmonella                 | < 3          | MPN/4g        | pass         |
| Bulk Density :                   | 21      | 41       | lb/cu ft | Date Tested: 20 A          | vpr. 16      |               |              |
| Carbonates (CaCO <sub>3</sub> ): | 130     | 66       | lb/ton   |                            |              |               |              |
| Conductivity (EC5):              | 13      | NA       | mmhos/cm |                            |              |               |              |
| Organic Matter:                  | 42.5    | 21.8     | %        | Inerts                     | % by weight  |               |              |
| Organic Carbon:                  | 22.0    | 11.0     | %        | Plastic                    | < 0.5        |               |              |
| Ash:                             | 57.5    | 29.5     | %        | Glass                      | < 0.5        |               |              |
| C/N Ratio                        | 14      | 14       | ratio    | Metal                      | < 0.5        |               |              |
| AgIndex                          | 5       | 5        | ratio    | Sharps                     | ND           |               |              |

P per ton Compost at 8,300 ppm is about 17 lb/ton =255 lb P per 15 tons compost or <u>0.26 lb/vine</u>

K per ton Compost at 34,000 ppm is about 68 lb/ton or =1,020 lb K per 15 tons compost or <u>1 lb/vine</u>

#### **Biochar Analysis**

| International BioChar Initiative (IBI) Laborator | ry Tests for Certification Program |
|--------------------------------------------------|------------------------------------|
|--------------------------------------------------|------------------------------------|

|                             | Dry Basis Unless Stated: Range | Units                | Method            |          |
|-----------------------------|--------------------------------|----------------------|-------------------|----------|
| Moisture (time of analysis) | 38.2                           | % wet wt.            | ASTM D1762-84 (   | 105c)    |
| Bulk Density                | 10.6                           | lb/cu ft             |                   |          |
| Organic Carbon              | 68.0                           | % of total dry mass  | Dry Combust-AST   | M D 4373 |
| Hydrogen/Carbon (H:C)       | 0.30 0.7 Max                   | Molar Ratio          | H dry combustion/ | C(above) |
| Total Ash                   | 25.5                           | % of total dry mass  | ASTM D-1762-84    |          |
| Total Nitrogen              | 0.69                           | % of total dry mass  | Dry Combustion    |          |
|                             | Bas                            | sic Soil Enhancement | Properties        |          |
|                             | Tot                            | tal (K)              | 19554 mg/kg       | Е        |
|                             | Tot                            | tal (P)              | 2738 mg/kg        | Е        |
|                             | Am                             | imonia (NH4-N)       | 13.4 mg/kg        | A        |
|                             | Nit                            | rate (NO3-N)         | 10.2 mg/kg        | А        |
|                             | Org                            | ganic (Org-N)        | 6856 mg/kg        | Calc.    |

**P per ton Biochar** at 2,738 ppm dry weight is about 3 lbs per ton as delivered

=33 lb P per 10 tons biochar or <u>0.03 lb/vine</u> **K per ton Biochar** at 19,554 ppm dry weight is about 23 lb/ton as delivered

=230 lb K per 10 tons biochar or 0.24 lb/vine



| Т           | itratable / | Acidity      |        |
|-------------|-------------|--------------|--------|
| AVERAGES    | mg/L        | % difference | ST DEV |
| Control     | 6.425       | 0.00%        | 0.26   |
| Compost     | 6.375       | -0.78%       | 0.29   |
| Biochar     | 6.375       | -0.78%       | 0.33   |
| Com+Biochar | 6.25        | -2.72%       | 0.24   |
|             | pl          | H            |        |
| AVERAGES    | pН          | % difference | ST DEV |
| Control     | 3.3925      | 0.00%        | 0.08   |
| Compost     | 3.4125      | 0.59%        | 0.09   |
| Biochar     | 3.4275      | 1.03%        | 0.12   |
| Com+Biochar | 3.4575      | 1.92%        | 0.09   |
|             | Bri         | ×            |        |
| AVERAGES    | brix        | % difference | ST DEV |
| Control     | 23.875      | 0.00%        | 1.01   |
| Compost     | 23.35       | -2.20%       | 0.47   |
| Biochar     | 24.25       | 1.57%        | 0.99   |
| Com+Biochar | 23.75       | -0.52%       | 0.87   |

### 4<sup>th</sup> Leaf Grape Quality

| Harvest 2020 4th Leaf | Yield | Cluster #          | Cluster lb |
|-----------------------|-------|--------------------|------------|
| R1                    | 9.22  | 54.60              | 0.31       |
| R2 Control            | 10.12 | 53.95              | 0.34       |
| R3                    | 8.66  | 46.60              | 0.34       |
| R4                    | 8.00  | 41.85              | 0.35       |
| Control Average       | 9.00  | 49.25              | 0.34       |
| R1                    | 10.37 | 55.25              | 0.34       |
| R2 Compost            | 10.72 | 54.30              | 0.36       |
| R3                    | 11.39 | 62.60              | 0.33       |
| R4                    | 10.68 | 54.45 <sub>5</sub> | 0.36       |
| Compost Average       | 10.79 | 56.65              | 0.35       |
| R1                    | 10.71 | 57.00              | 0.34       |
| R2 Biochar            | 10.79 | 57.40              | 0.35       |
| R3                    | 10.72 | 58.50              | 0.34       |
| R4                    | 8.27  | 45.55              | 0.33       |
| Biochar Average       | 10.12 | 54.61              | 0.34       |
| R1                    | 11.21 | 58.80              | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15              | 0.34       |
| R3                    | 13.09 | 65.10              | 0.37       |
| R4                    | 9.57  | 49.85              | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23              | 0.35       |

|             | Berry Weig  | ht           |        |
|-------------|-------------|--------------|--------|
| AVERAGES    | g/berry     | % difference | ST DEV |
| Control     | 1.3675      | 0.00%        | 0.02   |
| Compost     | 1.33        | -2.74%       | 0.05   |
| Biochar     | 1.3925      | 1.83%        | 0.05   |
| Com+Biochar | 1.3575      | -0.73%       | 0.02   |
|             | Berry Volur | ne           |        |
| AVERAGES    | ml/berry    | % difference | ST DEV |
| Control     | 1.1475      | 0.00%        | 0.04   |
| Compost     | 1.185       | 3.27%        | 0.07   |
| Biochar     | 1.24*       | 8.06%        | 0.08   |
| Com+Biochar | 1.15        | 0.22%        | 0.03   |
|             | Sugar per B | Berry        |        |
| AVERAGES    | mg/berry    | % difference | ST DEV |
| Control     | 271.5       | 0.00%        | 12.48  |
| Compost     | 273         | 0.55%        | 16.15  |
| Biochar     | 298.5*      | 9.94%        | 12.79  |
| Com+Biochar | 270.5       | -0.37%       | 16.82  |

### 4<sup>th</sup> Leaf Berry Size

| Harvest 2020 4th Leaf | Yield | Cluster #          | Cluster lb |
|-----------------------|-------|--------------------|------------|
| R1                    | 9.22  | 54.60              | 0.31       |
| R2 Control            | 10.12 | 53.95              | 0.34       |
| R3                    | 8.66  | 46.60              | 0.34       |
| R4                    | 8.00  | 41.85              | 0.35       |
| Control Average       | 9.00  | 49.25              | 0.34       |
| R1                    | 10.37 | 55.25              | 0.34       |
| R2 Compost            | 10.72 | 54.30              | 0.36       |
| R3                    | 11.39 | 62.60              | 0.33       |
| R4                    | 10.68 | 54.45 <sub>m</sub> | 0.36       |
| Compost Average       | 10.79 | 56.65              | 0.35       |
| R1                    | 10.71 | 57.00              | 0.34       |
| R2 Biochar            | 10.79 | 57.40              | 0.35       |
| R3                    | 10.72 | 58.50              | 0.34       |
| R4                    | 8.27  | 45.55              | 0.33       |
| Biochar Average       | 10.12 | 54.61              | 0.34       |
| R1                    | 11.21 | 58.80              | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15              | 0.34       |
| R3                    | 13.09 | 65.10              | 0.37       |
| R4                    | 9.57  | 49.85              | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23              | 0.35       |

| Polymeric Anthocyanins |            |              |         |  |  |  |  |
|------------------------|------------|--------------|---------|--|--|--|--|
| AVERAGES               | mg/L       | % difference | ST DEV  |  |  |  |  |
| Control                | 6.25       | 0.00%        | 0.9574  |  |  |  |  |
| Compost                | 6.00       | -4.00%       | 0.0000  |  |  |  |  |
| Biochar                | 6.50       | 4.00%        | 0.5774  |  |  |  |  |
| Com+Biochar            | 5.75       | -8.00%       | 0.5000  |  |  |  |  |
|                        | Tanni      | n            |         |  |  |  |  |
| AVERAGES               | mg/L       | % difference | ST DEV  |  |  |  |  |
| Control                | 207.50     | 0.00%        | 18.9473 |  |  |  |  |
| Compost                | 200.25     | -3.49%       | 18.9978 |  |  |  |  |
| Biochar                | 211.75     | 2.05%        | 22.3961 |  |  |  |  |
| Com+Biochar            | 201.00     | -3.13%       | 20.4124 |  |  |  |  |
| 1                      | otal Anthe | ocyanins     |         |  |  |  |  |
| AVERAGES               | mg/L       | % difference | ST DEV  |  |  |  |  |
| Control                | 627.50     | 0.00%        | 63.1057 |  |  |  |  |
| Compost                | 628.50     | 0.16%        | 15.3514 |  |  |  |  |
| Biochar                | 659.75     | 5.14%        | 49.5202 |  |  |  |  |
| Com+Biochar            | 642.50     | 2.39%        | 60.7317 |  |  |  |  |

### 4<sup>th</sup> Leaf Grape Color?

| Harvest 2020 4th Leaf | Yield | Cluster #          | Cluster lb |
|-----------------------|-------|--------------------|------------|
| R1                    | 9.22  | 54.60              | 0.31       |
| R2 Control            | 10.12 | 53.95              | 0.34       |
| R3                    | 8.66  | 46.60              | 0.34       |
| R4                    | 8.00  | 41.85              | 0.35       |
| Control Average       | 9.00  | 49.25              | 0.34       |
| R1                    | 10.37 | 55.25              | 0.34       |
| R2 Compost            | 10.72 | 54.30              | 0.36       |
| R3                    | 11.39 | 62.60              | 0.33       |
| R4                    | 10.68 | 54.45 <sub>5</sub> | 0.36       |
| Compost Average       | 10.79 | 56.65              | 0.35       |
| R1                    | 10.71 | 57.00              | 0.34       |
| R2 Biochar            | 10.79 | 57.40              | 0.35       |
| R3                    | 10.72 | 58.50              | 0.34       |
| R4                    | 8.27  | 45.55              | 0.33       |
| Biochar Average       | 10.12 | 54.61              | 0.34       |
| R1                    | 11.21 | 58.80              | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15              | 0.34       |
| R3                    | 13.09 | 65.10              | 0.37       |
| R4                    | 9.57  | 49.85              | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23              | 0.35       |

## Economic Return Assessment on Biochar-Only Application

- Yield Increase 3<sup>rd</sup> Leaf
  - 2019 +biochar=1.3 ton/acre increase
    Grape price \$1500/ton
  - Additional revenue/acre = **\$1,950**
- Yield Increase 4<sup>th</sup> Leaf
  - 2020 +biochar = 1.1 ton/acre increase
  - Grape price \$1500/ton
  - Additional revenue/acre = **\$1,650**
  - No further amendments cost
- Yield Increase 5th Leaf
  - 2021 +biochar = 1.5 ton/acre increase
  - Grape price \$1500/ton
  - Additional Revenue = **\$2,250**

- Biochar cost
  - 10 ton/acre
  - Biochar cost \$240 per ton
  - Cost/acre = **\$2,400**
  - Return on Investment
    - Additional revenue \$5,850/ac first 3 producing years, <u>\$3450 above cost</u>
    - Assume additional per year of 0.5 t/ac over no amendments, \$5,250 extra/ac over the next 7 years
    - Potentially added \$8,700 income/ac
      over 10 yrs harvesting

#### Additional revenue above cost for inputs



| Harvest 2020 4th Leaf | Yield | Cluster #          | Cluster lb |
|-----------------------|-------|--------------------|------------|
| R1                    | 9.22  | 54.60              | 0.31       |
| R2 Control            | 10.12 | 53.95              | 0.34       |
| R3                    | 8.66  | 46.60              | 0.34       |
| R4                    | 8.00  | 41.85              | 0.35       |
| Control Average       | 9.00  | 49.25              | 0.34       |
| R1                    | 10.37 | 55.25              | 0.34       |
| R2 Compost            | 10.72 | 54.30              | 0.36       |
| R3                    | 11.39 | 62.60              | 0.33       |
| R4                    | 10.68 | 54.45 <sub>0</sub> | 0.36       |
| Compost Average       | 10.79 | 56.65              | 0.35       |
| R1                    | 10.71 | 57.00              | 0.34       |
| R2 Biochar            | 10.79 | 57.40              | 0.35       |
| R3                    | 10.72 | 58.50              | 0.34       |
| R4                    | 8.27  | 45.55              | 0.33       |
| Biochar Average       | 10.12 | 54.61              | 0.34       |
| R1                    | 11.21 | 58.80              | 0.35       |
| R2 Compost + Biochar  | 10.23 | 55.15              | 0.34       |
| R3                    | 13.09 | 65.10              | 0.37       |
| R4                    | 9.57  | 49.85              | 0.35       |
| Compost-Bio Average   | 11.02 | 57.23              | 0.35       |





## Biochar and Composting

#### CO-COMPOSTING, BLENDING, & AGING

#### • Compost is improved

- Odor control (i.e. ammonia)
- GHG emission reduction (i.e.  $CH_{a}$ ,  $N_{2}O$ , etc.)
- Reduced nutrient loss, especially N
- Increased microbial activity & diversity
- Maturity and stability superior

#### • Biochar is improved

- Complexed surface becomes more functional
- Microbial colonization
- Nutrient loading
- Better plant growth response



## Biochar and Soil Biology

#### MICROBIAL HABITAT & ROOTS

- Air, water and nutrients are retained in pores and on surfaces
- Organic coating forms on surfaces over time (i.e. biochar "aging")
- Efficient electron transfer reactions
- Studies consistently demonstrate enhanced biological activity and diversity in soils using biochar




#### Scanning Electron Microscope Photos of Biochar



Mycorrhizal spore extending hyphae into biochar particle. Photo courtesy of Ogawa [8]



Surface complexing during composting. Photo courtesy of Yoshizawa [9]

## Biochar ??

# Compost



Fig. 10. Schematic cross sectional views of two vine rows showing (a) the most common elements of soil compaction in vineyards and illustrating restricted lateral vine root growth associated with wheel traffic compaction (b) amelioration of wheel, midrow and under-vine crusts and tillage pan compaction showing possible expansion of the vine root system. The under-vine cover crop is represented as being controlled by herbicide application during the growing season.

From A. Cass, 2007 Australian Grape Grower and Winemaker, Annual Technical Issue













#### Nitrogen Management

#### **Soil Health**

Water Use Efficiency

**Carbon Sequestration** 

#### Soil Management

#### More Efficient Conventional and Organic Systems



### Resources

- > Webinar recording link will be posted at Dovetail, USBI, and IBI
- Biochar Use in Viticulture full report: www.dovetailinc.org/portfoliodetail.php?id=61688a6830537
  For (www.dovetailinc.org) Click Reports tab for the full library
- USBI-(biochar-us.org) broad array of US resources including biochar suppliers www.usbi.org
- International Biochar Initiative-(biochar-international.org) links to biochar related research, analytical resources, educational material, and links to international biochar networks.